Deep Convolutional Neural Networks Transfer Learning Comparison on Arabic Handwriting Recognition System

نویسندگان

چکیده

Around 27 languages and more than 420 million people worldwide use Arabic letters. That makes the language one of most used languages. However, has a challenge, namely difference in letters based on their position. handwriting recognition is important for various applications, such as education communication. One example during pandemic when turned digital, making recognizing students' difficult. This paper aims to create model that can recognize by comparing several CNN architectures using transfer learning classify Arabic, Hijja, AHCD datasets. Transfer been trained previous datasets other suitable models with small because it improve accuracy even The were split into 60%, 20%, 20% training, validation, testing. Each uses data augmentation 50% dropout fully connected layer reduce overfitting. Some this study writing are ResNet, DenseNet, VGG16, VGG19, InceptionV3, MobileNet. compiled parameters. best achieved Hijja dataset VGG16 Adam optimizer 0.0001 rate. Based research, expected know performance classifying handwriting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Convolutional Neural Networks for Smile Recognition

This thesis describes the design and implementation of a smile detector based on deep convolutional neural networks. It starts with a summary of neural networks, the difficulties of training them and new training methods, such as Restricted Boltzmann Machines or autoencoders. It then provides a literature review of convolutional neural networks and recurrent neural networks. In order to select ...

متن کامل

Offline Arabic Handwriting Recognition with Multidimensional Recurrent Neural Networks

Offline handwriting recognition is usually performed by first extracting a sequence of features from the image, then using either a hidden Markov model (HMM) [9] or an HMM / neural network hybrid [10] to transcribe the features. However a system trained directly on pixel data has several potential advantages. One is that defining input features suitable for an HMM requires considerable time and...

متن کامل

Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition

Handwritten character recognition is one of the focused areas of research in the field of Pattern Recognition. In this paper, a hybrid model of rough neural network has been developed for recognizing isolated Arabic/Farsi digital characters. It solves the neural network problems; proneness to overfitting, and the empirical nature of model development using rough sets and the dissimilarity analy...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Arabic Online Handwriting Recognition Using Neural Network

This article presents the development of an Arabic online handwriting recognition system. To develop our system, we have chosen the neural network approach. It offers solutions for most of the difficulties linked to Arabic script recognition. We test the approach with our collected databases. This system shows a good result and it has a high accuracy (98.50% for characters, 96.90% for words).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOIV : International Journal on Informatics Visualization

سال: 2023

ISSN: ['2549-9610', '2549-9904']

DOI: https://doi.org/10.30630/joiv.7.2.1605